Title
Self-adjoint oscillator operator from a modified factorization
11627/353311627/3533
Author
Reyes, Marco A.
Rosu Barbus, Haret-Codratian
Gutiérrez, M. Ranferí
Abstract
"By using an alternative factorization, we obtain a self-adjoint oscillator operator of the form Lδ=ddx(pδ(x)ddx)−(x2pδ(x)+pδ(x)−1), where pδ(x)=1+δe−x2, with δ∈(−1,∞) an arbitrary real factorization parameter. At positive values of δ, this operator interpolates between the quantum harmonic oscillator Hamiltonian for δ=0 and a scaled Hermite operator at high values of δ. For the negative values of δ, the eigenfunctions look like deformed quantum mechanical Hermite functions. Possible applications are mentioned."
Publication date
2011Publication type
articleDOI
https://doi.org/10.1016/j.physleta.2011.04.012Knowledge area
F͍SICAEditor
ElsevierKeywords
FactorizationQuantum harmonic oscillator
Generalized Hermite polynomials
Ornstein-Uhlenbeck processes