Título
Ermakov-Lewis invariants and Reid systems
11627/353711627/3537
Autor
Mancas, Stefan C
Rosu Barbus, Haret-Codratian
Resumen
"Reid´s mth-order generalized Ermakov systems of nonlinear coupling constant ? are equivalent to an integrable Emden-Fowler equation. The standard Ermakov-Lewis invariant is discussed from this perspective, and a closed formula for the invariant is obtained for the higher-order Reid systems (m ? 3). We also discuss the parametric solutions of these systems of equations through the integration of the Emden-Fowler equation and present an example of a dynamical system for which the invariant is equivalent to the total energy."
Fecha de publicación
2014Tipo de publicación
articleDOI
https://doi.org/10.1016/j.physleta.2014.05.008Área de conocimiento
CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRAEditor
ElsevierPalabras clave
Ermakov-Lewis invariantReid system
Emden-Fowler equation
Abel equation
Parametric solution