Título
Synthesis, characterization, and sensor applications of spinel ZnCo2O4 nanoparticles
11627/382711627/3827
Autor
Morán Lázaro, Juan Pablo
López Urías, Florentino
Muñoz Sandoval, Emilio
Blanco Alonso, Oscar
Sánchez Tizapa, Marciano
Carreón Alvarez, Alejandra
Guillén Bonilla, Héctor
Olvera Amador, María De la Luz
Guillén Bonilla, Alex
Rodríguez Betancourtt, Verónica María
Resumen
"Spinel ZnCo2O4 nanoparticles were synthesized by means of the microwave-assisted colloidal method. A solution containing ethanol, Co-nitrate, Zn-nitrate, and dodecylamine was stirred for 24 h and evaporated by a microwave oven. The resulting solid material was dried at 200 °C and subsequently calcined at 500 °C for 5 h. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, confirming the formation of spinel ZnCo2O4 nanoparticles with average sizes between 49 and 75 nm. It was found that the average particle size decreased when the dodecylamine concentration increased. Pellets containing ZnCo2O4 nanoparticles were fabricated and tested as sensors in carbon monoxide (CO) and propane (C3H8) gases at different concentrations and temperatures. Sensor performance tests revealed an extremely high response to 300 ppm of CO at an operating temperature of 200 °C."
Fecha de publicación
2016-12Tipo de publicación
articleDOI
https://doi.org/10.3390/s16122162Área de conocimiento
QUÍMICAEditor
MDPIPalabras clave
SpinelFaceted nanoparticle
Cobaltite
Sensors