Title
Una aproximación determinista de orden fraccionario al movimiento Browniano
11627/397311627/3973
Author
Gilardi Velázquez, Héctor Eduardo
Director
Campos Cantón, EricAbstract
"A partir de la ecuación de Langevin, un modelo determinista para la generación
de movimiento Browniano es propuesto. Reemplazando el término estocástico por
una variable de estado adicional da un grado de libertad más a la ecuación de Langevin
y la transforma en un sistema de tres ecuaciones diferenciales lineales, además
derivadas fraccionarias son consideradas; las cuales nos permiten obtener mejores
propiedades estadísticas propias del movimiento Browniano real. Como parte de la
aceleración fluctuante se establecen superficies de conmutación en el modelo. El sistema
final no contiene términos estocásticos, esto es, el movimiento obtenido es
completamente determinista. Además, del análisis de series de tiempo, encontramos
que el comportamiento del sistema presenta las propiedades características de movimiento
Browniano, tales como: crecimiento lineal en tiempo para el desplazamiento
cuadrado promedio, distribución de probabilidad Gaussiana para el desplazamiento
promedio. Adicionalmente, usamos el análisis de fluctuación sin tendencia para
probar el carácter Browniano de las series obtenidas." "From the Langevin equation, a deterministic model for Brownian motion generation is proposed. Replacing the stochastic term with an additional state variable gives a degree of freedom to the Langevin equation and transforms it into a system of three linear differential equations, also fractional derivatives are considered; which allow us to obtain better statistics properties of the real Brownian movement. As a part of the fluctuating acceleration, switching surfaces are established in the model. The final system does not contain a stochastic terms, that is, the obtained motion is completely deterministic. In addition, from the time series analysis, we found that the system behavior exhibits statistics properties of Brownian motion, such as, a linear growth in time of the mean square displacement, Gaussian probability distribution for the average displacement. Furthermore, we use the detrended fluctuation analysis to prove the Brownian character of this motion."
Publication date
2018-07Publication type
doctoralThesisKnowledge area
AreaKeywords
Movimiento BrownianoCálculo fraccionario
Caos
Sistemas disipativos inestables
View/ Open
Metadata
Show full item recordThe following license files are associated with this item: