Title
Giant and Reversible Inverse Barocaloric Effects near Room Temperature in Ferromagnetic MnCoGeB0.03
11627/553611627/5536
Author
Aznar, Araceli
Lloveras, Pol
Kim, Ji-Yeob
Stern Taulats, Enric
Barrio, Maria
Lluis Tamarit, Josep
Sánchez Valdés, Cesar Fidel
Sánchez Llamazares, José Luis
Mathur, Neil
Moya, Xavier
Abstract
"Hydrostatic pressure represents an inexpensive and practical method of driving caloric effects in brittle magnetocaloric materials, which display first?order magnetostructural phase transitions whose large latent heats are traditionally accessed using applied magnetic fields. Here, moderate changes of hydrostatic pressure are used to drive giant and reversible inverse barocaloric effects near room temperature in the notoriously brittle magnetocaloric material MnCoGeB0.03. The barocaloric effects compare favorably with those observed in barocaloric materials that are magnetic. The inevitable fragmentation provides a large surface for heat exchange with pressure?transmitting media, permitting good access to barocaloric effects in cooling devices."
Publication date
2019Publication type
articleDOI
https://doi.org/10.1002/adma.201903577Knowledge area
QUÍMICAPublisher
WileyKeywords
Barocaloric materialsEnvironmentally friendly cooling
Energy efficient