Título
Non-autonomous Ginzburg-Landau solitons using the He-Li mapping method
11627/632211627/6322
Autor
Pérez Maldonado, Maximino
Rosu Barbus, Haret-Codratian
Flores Garduño, Elizabeth
Resumen
"We find and discuss the non-autonomous soliton solutions in the case of variable nonlinearity and dispersion implied by the Ginzburg-Landau equation with variable coefficients. In this work we obtain non-autonomous Ginzburg-Landau solitons from the standard autonomous Ginzburg-Landau soliton solutions using a simplified version of the He-Li mapping. We find soliton pulses of both arbitrary and fixed amplitudes in terms of a function constrained by a single condition involving the nonlinearity and the dispersion of the medium. This is important because it can be used as a tool for the parametric manipulation of these non-autonomous solitons. "
Fecha de publicación
2020Tipo de publicación
articleDOI
https://doi.org/10.30878/ces.v27n4a3Área de conocimiento
FÍSICAEditor
Universidad Autónoma del Estado de MéxicoPalabras clave
NonlinearGinzburg-Landau Equation
Non-Autonomous Solitons