Mostrar el registro sencillo del ítem

Título

Integrable equations with Ermakov-Pinney nonlinearities and Chiellini damping

dc.contributor.authorMancas, Stefan C
dc.contributor.authorRosu Barbus, Haret-Codratian
dc.date.accessioned2018-03-21T23:42:38Z
dc.date.available2018-03-21T23:42:38Z
dc.date.issued2015
dc.identifier.citationStefan C. Mancas, Haret C. Rosu, Integrable equations with Ermakov-Pinney nonlinearities and Chiellini damping, Applied Mathematics and Computation, Volume 259, 2015, Pages 1-11, ISSN 0096-3003, http://dx.doi.org/10.1016/j.amc.2015.02.037.
dc.identifier.urihttp://hdl.handle.net/11627/3531
dc.description.abstract"We introduce a special type of dissipative Ermakov-Pinney equations of the form v?? + g(v)v? + h(v) = 0, where h(v) = h0(v) + cv?3 and the nonlinear dissipation g(v) is based on the corresponding Chiellini integrable Abel equation. When h0(v) is a linear function, h0(v) = ?2v, general solutions are obtained following the Abel equation route. Based on particular solutions, we also provide general solutions containing a factor with the phase of the Milne type. In addition, the same kinds of general solutions are constructed for the cases of higher-order Reid nonlinearities. The Chiellini dissipative function is actually a dissipation-gain function because it can be negative on some intervals. We also examine the nonlinear case h0(v) = ?20(v ? v2) and show that it leads to an integrable hyperelliptic case."
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDissipative Ermakov-Pinney equation
dc.subjectChiellini damping
dc.subjectReid nonlinearities
dc.subjectAbel equation
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.titleIntegrable equations with Ermakov-Pinney nonlinearities and Chiellini damping
dc.typearticle
dc.identifier.doihttps://doi.org/10.1016/j.amc.2015.02.037
dc.rights.accessAcceso Abierto


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional