Show simple item record

Title

Self-adjoint oscillator operator from a modified factorization

dc.contributor.authorReyes, Marco A.
dc.contributor.authorRosu Barbus, Haret-Codratian
dc.contributor.authorGutiérrez, M. Ranferí
dc.contributor.editorElsevier
dc.date.accessioned2018-03-21T23:42:39Z
dc.date.available2018-03-21T23:42:39Z
dc.date.issued2011
dc.identifier.citationMarco A. Reyes, H.C. Rosu, M. Ranferí Gutiérrez, Self-adjoint oscillator operator from a modified factorization, In Physics Letters A, Volume 375, Issue 22, 2011, Pages 2145-2148.
dc.identifier.urihttp://hdl.handle.net/11627/3533
dc.description.abstract"By using an alternative factorization, we obtain a self-adjoint oscillator operator of the form Lδ=ddx(pδ(x)ddx)−(x2pδ(x)+pδ(x)−1), where pδ(x)=1+δe−x2, with δ∈(−1,∞) an arbitrary real factorization parameter. At positive values of δ, this operator interpolates between the quantum harmonic oscillator Hamiltonian for δ=0 and a scaled Hermite operator at high values of δ. For the negative values of δ, the eigenfunctions look like deformed quantum mechanical Hermite functions. Possible applications are mentioned."
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectFactorization
dc.subjectQuantum harmonic oscillator
dc.subjectGeneralized Hermite polynomials
dc.subjectOrnstein-Uhlenbeck processes
dc.subject.classificationF͍SICA
dc.titleSelf-adjoint oscillator operator from a modified factorization
dc.typearticle
dc.identifier.doihttps://doi.org/10.1016/j.physleta.2011.04.012
dc.rights.accessAcceso Abierto


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional