Mostrar el registro sencillo del ítem
Título
Self-adjoint oscillator operator from a modified factorization
dc.contributor.author | Reyes, Marco A. | |
dc.contributor.author | Rosu Barbus, Haret-Codratian | |
dc.contributor.author | Gutiérrez, M. Ranferí | |
dc.contributor.editor | Elsevier | |
dc.date.accessioned | 2018-03-21T23:42:39Z | |
dc.date.available | 2018-03-21T23:42:39Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Marco A. Reyes, H.C. Rosu, M. Ranferí Gutiérrez, Self-adjoint oscillator operator from a modified factorization, In Physics Letters A, Volume 375, Issue 22, 2011, Pages 2145-2148. | |
dc.identifier.uri | http://hdl.handle.net/11627/3533 | |
dc.description.abstract | "By using an alternative factorization, we obtain a self-adjoint oscillator operator of the form Lδ=ddx(pδ(x)ddx)−(x2pδ(x)+pδ(x)−1), where pδ(x)=1+δe−x2, with δ∈(−1,∞) an arbitrary real factorization parameter. At positive values of δ, this operator interpolates between the quantum harmonic oscillator Hamiltonian for δ=0 and a scaled Hermite operator at high values of δ. For the negative values of δ, the eigenfunctions look like deformed quantum mechanical Hermite functions. Possible applications are mentioned." | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Factorization | |
dc.subject | Quantum harmonic oscillator | |
dc.subject | Generalized Hermite polynomials | |
dc.subject | Ornstein-Uhlenbeck processes | |
dc.subject.classification | F͍SICA | |
dc.title | Self-adjoint oscillator operator from a modified factorization | |
dc.type | article | |
dc.identifier.doi | https://doi.org/10.1016/j.physleta.2011.04.012 | |
dc.rights.access | Acceso Abierto |