Show simple item record

Title

Ermakov-Lewis invariants and Reid systems

dc.contributor.authorMancas, Stefan C
dc.contributor.authorRosu Barbus, Haret-Codratian
dc.contributor.editorElsevier
dc.date.accessioned2018-03-21T23:42:40Z
dc.date.available2018-03-21T23:42:40Z
dc.date.issued2014
dc.identifier.citationStefan C. Mancas, Haret C. Rosu, Ermakov-Lewis invariants and Reid systems, Physics Letters A, Volume 378, Issue 30, 2014, Pages 2113-2117, ISSN 0375-9601, http://dx.doi.org/10.1016/j.physleta.2014.05.008.
dc.identifier.urihttp://hdl.handle.net/11627/3537
dc.description.abstract"Reid´s mth-order generalized Ermakov systems of nonlinear coupling constant ? are equivalent to an integrable Emden-Fowler equation. The standard Ermakov-Lewis invariant is discussed from this perspective, and a closed formula for the invariant is obtained for the higher-order Reid systems (m ? 3). We also discuss the parametric solutions of these systems of equations through the integration of the Emden-Fowler equation and present an example of a dynamical system for which the invariant is equivalent to the total energy."
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectErmakov-Lewis invariant
dc.subjectReid system
dc.subjectEmden-Fowler equation
dc.subjectAbel equation
dc.subjectParametric solution
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.titleErmakov-Lewis invariants and Reid systems
dc.typearticle
dc.identifier.doihttps://doi.org/10.1016/j.physleta.2014.05.008
dc.rights.accessAcceso Abierto


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional