dc.contributor.author | Mancas, Stefan C | |
dc.contributor.author | Rosu Barbus, Haret-Codratian | |
dc.contributor.editor | Elsevier | |
dc.date.accessioned | 2018-03-21T23:42:40Z | |
dc.date.available | 2018-03-21T23:42:40Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Stefan C. Mancas, Haret C. Rosu, Ermakov-Lewis invariants and Reid systems, Physics Letters A, Volume 378, Issue 30, 2014, Pages 2113-2117, ISSN 0375-9601, http://dx.doi.org/10.1016/j.physleta.2014.05.008. | |
dc.identifier.uri | http://hdl.handle.net/11627/3537 | |
dc.description.abstract | "Reid´s mth-order generalized Ermakov systems of nonlinear coupling constant ? are equivalent to an integrable Emden-Fowler equation. The standard Ermakov-Lewis invariant is discussed from this perspective, and a closed formula for the invariant is obtained for the higher-order Reid systems (m ? 3). We also discuss the parametric solutions of these systems of equations through the integration of the Emden-Fowler equation and present an example of a dynamical system for which the invariant is equivalent to the total energy." | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Ermakov-Lewis invariant | |
dc.subject | Reid system | |
dc.subject | Emden-Fowler equation | |
dc.subject | Abel equation | |
dc.subject | Parametric solution | |
dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | |
dc.title | Ermakov-Lewis invariants and Reid systems | |
dc.type | article | |
dc.identifier.doi | https://doi.org/10.1016/j.physleta.2014.05.008 | |
dc.rights.access | Acceso Abierto | |