Título
Self-adjoint oscillator operator from a modified factorization
11627/353311627/3533
Autor
Reyes, Marco A.
Rosu Barbus, Haret-Codratian
Gutiérrez, M. Ranferí
Resumen
"By using an alternative factorization, we obtain a self-adjoint oscillator operator of the form Lδ=ddx(pδ(x)ddx)−(x2pδ(x)+pδ(x)−1), where pδ(x)=1+δe−x2, with δ∈(−1,∞) an arbitrary real factorization parameter. At positive values of δ, this operator interpolates between the quantum harmonic oscillator Hamiltonian for δ=0 and a scaled Hermite operator at high values of δ. For the negative values of δ, the eigenfunctions look like deformed quantum mechanical Hermite functions. Possible applications are mentioned."
Fecha de publicación
2011Tipo de publicación
articleDOI
https://doi.org/10.1016/j.physleta.2011.04.012Área de conocimiento
F͍SICAEditor
ElsevierPalabras clave
FactorizationQuantum harmonic oscillator
Generalized Hermite polynomials
Ornstein-Uhlenbeck processes